Energy and Performance of Smartphone Radio Bundling in Outdoor Environments

Ana Nika, Yibo Zhu, Ning Ding*, Abhilash Jindal*, Y. Charlie Hu*, Xia Zhou+, Ben Y. Zhao and Haitao Zheng
UC Santa Barbara, *Purdue University, +Dartmouth College

Radio Bundling

Use WiFi + LTE at the same time on smartphones

Questions:
1. What is the maximum benefit that can be provided by bundling?
2. What are the energy costs of achieving that performance gain?
3. What role do CPU and radio interfaces play in the energy profile of radio bundling protocols?

Throughput Performance

Metric:

\[R_s = \frac{\text{THROUGHPUT}_{\text{LTE} \textit{only}}}{{\text{THROUGHPUT}_{\text{Bundling}}}} \]
\[q = \frac{\text{THROUGHPUT}_{\text{Bundling}}}{{\text{THROUGHPUT}_{\text{LTE}}} \text{ B]} \]

- The throughput of Bundling is the sum of the LTE radio throughput and the WiFi throughput.
 \[R_s \text{LTE} = \frac{1}{1+q} \text{ and } R_s \text{WiFi} = \frac{q}{1+q} \]

- Bundling can achieve up to 2x throughput gain over Best Radio.
 \[R_s \text{B} \text{R} \text{ radio} = \max \left(\frac{1}{1+q}, \frac{q}{1+q} \right) \]

- Bundling can have up to 5x throughput gain over Radio Switching, because of switching overhead.
- MPTCP is able to achieve 40%-85% of the optimal Bundling performance.
- MPTCP is insensitive to the relative RF condition between WiFi and LTE.

Energy Consumption

- The LTE radio is the heaviest energy consumer. Consumes at least 50% of the total power draw.
- CPU consumes a significant amount of energy. Median value of CPU energy consumption over total energy is 20% for LTE-only and MPTCP, 23% for Bundling, and 60% for WiFi-only.
- Bundling consumes less energy compared to LTE-only, despite turning on the extra WiFi radio. This is because Bundling improves the transfer throughput so that the transfer ends earlier.

\[\text{Cost}_X = \frac{\text{Energy}_{\text{Bundling}}}{{\text{Energy}_X} \text{ B]} \]
where X can be WiFi-only, LTE-only, MPTCP

Instantaneous Componentized Power Draw

- **Bundling**
 - Power (W)
 - Time (s)
 - Data Transfer Ends

- **LTE-only**
 - Power (W)
 - Time (s)
 - Data Transfer Ends

- **WiFi-only**
 - Power (W)
 - Time (s)
 - Data Transfer Ends

Methodology

- **Data Collection**
 - 6 measurement instances
 - 6 locations: 5 US cities, 1 EU

- **Data Analysis**
 - Throughput Performance
 - Energy Consumption

MPTCP (Multipath TCP) is a bundling protocol implementation in the transport layer that aims to be fair to TCP users.